

Fire, Land Cover and Climate Change: Impacts on River Flows in Semiarid Shrubland Watersheds

Principal Investigators: Allen Hope

Christina Tague

hope1@mail.sdsu.edu ctague@mail.sdsu.edu

Department of Geography, San Diego State University

Introduction

- Fire in Mediterranean-Type Ecosystems (MTEs) dramatically alters watershed land cover conditions and initiates vegetation recovery sequences (pyric succession) that span many decades
- Complexity and uncertainty around vegetation long-term recovery rates presents a major challenge to modeling the current and future response of river flows to different fire regimes
- Hydrologic uncertainties are amplified by potential changes in future climatic conditions
- Increased ignition sources associated with growing human population and expected changes in climatic conditions are likely to increase fire frequencies in shrubland watersheds, typical of MTEs

Hypothesis

Changes in the fire regime and climate will alter aggregate ecosystem conditions giving rise to modified long-term river flow characteristics

Study Site

Santa Cruz

- Area: 192 km²
- MAP: 496 mm
- MAQ: 1.7 * 10⁷ m³
 Mean elevation:
- Mean en
- Mean slope: 43%

Gibraltar

- Area: 559 km²
- MAP: 680 mm
- MAQ: 6.0 * 10⁷ m³
 Mean elevation:
- 1035 m
- Mean slope: 44%

Methods

Anticipated Results

- An improved understanding and quantification of the hydrologic consequences of land cover and climate change associated with different fire regimes in MTE semiarid shrubland watersheds
- Improved hydroecological modeling algorithms for semiarid shrubland watersheds
- Improved satellite-based models for deriving leaf area index (LAI) in these ecosystems
- A time-series of regional LAI maps that will be available for other investigators and for comparison with other LAI products (e.g., MODIS standard products)
- An integrated fire regime, climate and hydroecological modeling system that can incorporate improved sub-models for future research in MTE landscapes

